LeetCodet题解--18. 4Sum(4个数的和)

链接


LeetCode题目:https://leetcode.com/problems/4sum

GitHub代码:https://github.com/gatieme/LeetCode/tree/master/018-4Sum

CSDN题解:http://blog.csdn.net/gatieme/article/details/51089460

题意


Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.

A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)

给一个包含n个数的整数数组S,在S中找到所有使得和为给定整数target的四元组(a, b, c, d)。
例如,对于给定的整数数组S=[1, 0, -1, 0, -2, 2]和target=0. 满足要求的四元组集合为:

(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)

四元组(a, b, c, d)中,需要满足a <= b <= c <= d
答案中不可以包含重复的四元组

借用3Sum的方法


我们采用2sum,以及3sum的方法,先排序后,用两趟循环循环分别遍历第一个数和第二个数,然后剩余的两个数,用二分查找的方法去找。

  1. 对数组排序

  2. 确定四元数中的前两个(a,b)

  3. 遍历剩余数组确定两外两个(c,d),确定cd时思路跟3Sum确定后两个数据一样,二分查找左右逼近。

#include <iostream>
#include <vector>

#include <algorithm>


using namespace std;


//#define __tmain main

class Solution
{

public:

    vector<vector<int>> fourSum(vector<int>& nums, int target)
    {
        vector<vector<int>> res;
        int size = nums.size( );

        sort(nums.begin( ), nums.end( ));


        for(int i = 0; i < size - 3; i++)
        {
            //skip same i
            while(i > 0 && i < size - 3 && nums[i] == nums[i - 1])
            {
                //cout <<"skip all " <<nums[i] <<endl;
                i++;
            }
            for(int j = i + 1; j < size - 2; j++)
            {
                //skip same i
                while(j > i + 1 && j < size - 2 && nums[j] == nums[j - 1])
                {
                    //cout <<"skip all " <<nums[i] <<endl;
                    j++;
                }

                for(int start = j + 1, end = size - 1;
                    start < end; )
                {
                    int sum = nums[i] + nums[j] + nums[start] + nums[end];

                    if(sum == target)
                    {

                        vector<int> cur(4);
                        cur[0] = nums[i];
                        cur[1] = nums[j];
                        cur[2] = nums[start];
                        cur[3] = nums[end];

                        res.push_back(cur);

                        start++;
                        end--;
                        //skip same j
                        while(start < end
                           && nums[start] == nums[start - 1])
                        {
                            //cout <<"skip all " <<nums[start] <<endl;
                            start++;
                        }

                        //skip same k
                        while(end > start && nums[end] == nums[end + 1])
                        {
                            //cout <<"skip all " <<nums[end] <<endl;
                            end--;
                        }
                    }
                    else if(sum > target)
                    {
                        end--;
                        while(end > start && nums[end] == nums[end + 1])
                        {
                            //cout <<"skip all " <<nums[end] <<endl;
                            end--;
                        }

                    }
                    else if(sum < target)
                    {
                        start++;
                        while(start < end
                           && nums[start] == nums[start - 1])
                        {
                            //cout <<"skip all " <<nums[start] <<endl;
                            start++;
                        }
                    }
                }
            }
        }

        return res;

    }
};




int __tmain()
{
    vector<vector<int>> result;
    Solution solution;
    vector<int> vec;
    vec.push_back(-3);
    vec.push_back(-2);
    vec.push_back(-1);
    vec.push_back(0);
    vec.push_back(0);
    vec.push_back(1);
    vec.push_back(2);
    vec.push_back(3);

    result = solution.fourSum(vec, 0);

    for(int i = 0; i < result.size( ); i++)
    {
        for(int j = 0; j < result[i].size( ); j++)
        {
            printf("%d ", result[i][j]);
        }
        printf("\n");
    }
    return 0;
}

我们是通过跳过相同的值的方法来去重复的

            //skip same i
            while(i > 0 && i < size - 3 && nums[i] == nums[i - 1])
            {
                //cout <<"skip all " <<nums[i] <<endl;
                i++;
            }

网上同样思路的方法,看到有些是通过set来去重复的

参见 [LeetCode]18.4Sum

#include <iostream>
#include <stdio.h>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;

class Solution {
public:
    vector<vector<int> > fourSum(vector<int> &num, int target)
    {
        int i,j,start,end;
        int Len = num.size();
        vector<int> triplet;
        vector<vector<int>> triplets;
        set<vector<int>> sets;
        //排序
        sort(num.begin(),num.end());
        for(i = 0;i < Len-3;i++)
        {
            for(j = i + 1;j < Len - 2;j++)
            {
                //二分查找
                start = j + 1;
                end = Len - 1;
                while(start < end){
                    int curSum = num[i] + num[j] + num[start] + num[end];
                    //相等 -> 目标
                    if(target == curSum)
                    {
                        triplet.clear();
                        triplet.push_back(num[i]);
                        triplet.push_back(num[j]);
                        triplet.push_back(num[start]);
                        triplet.push_back(num[end]);
                        sets.insert(triplet);
                        start ++;
                        end --;
                    }
                    //大于 -> 当前值小需要增大
                    else if(target > curSum)
                    {
                        start ++;
                    }
                    //小于 -> 当前值大需要减小
                    else{
                        end --;
                    }
                }//while
            }
        }//for
        //利用set去重
        set<vector<int>>::iterator it = sets.begin();
        for(; it != sets.end(); it++)
            triplets.push_back(*it);
        return triplets;
    }
};
int main() {
    vector<vector<int>> result;
    Solution solution;
    vector<int> vec;
    vec.push_back(-3);
    vec.push_back(-2);
    vec.push_back(-1);
    vec.push_back(0);
    vec.push_back(0);
    vec.push_back(1);
    vec.push_back(2);
    vec.push_back(3);
    result = solution.fourSum(vec,0);
    for(int i = 0;i < result.size();i++)
    {
        for(int j = 0;j < result[i].size();j++)
        {
            cout <<result[i][j]);
        }
        cout <<endl;
    }
    return 0;
}

递归求解


类似于15题求解的3Sum问题,这次求解4Sum问题,本质是相同的,不可以采用穷举法;
其实求解4Sum问题可以分解为求3Sum问题,对数列依次遍历i,我们只需得到在第i个数后面,找出所有和为(target?nums[i])的三元组,同理求3Sum又可以退化为2Sum,进而退化为1Sum。
因此,采用递归的思想解决KSum问题。

#include <iostream>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <unordered_set>
#include <set>

using namespace std;


class Solution {
public:
    /*4-sum算法,递归实现,TLE*/
    vector<vector<int>> fourSum1(vector<int>& nums, int target) {
        if (nums.empty())
            return vector<vector<int>>();

        sort(nums.begin(), nums.end());

        return k_Sum(nums, 0, 4, target);
    }
    /*k-sum算法*/
    vector<vector<int>> k_Sum(vector<int> &nums, int begPos, int count, int target)
    {
        if (nums.empty())
            return vector<vector<int>>();
        /*所输入序列为已排序*/
        int len = nums.size();
        unordered_set<int> visited;
        vector<vector<int>> ret;
        vector<int> tmp;
        /*2-sum 处理*/
        if (2 == count)
        {
            int i = begPos, j = len - 1;
            while (i < j)
            {
                int sum = nums[i] + nums[j];
                if (sum == target && visited.find(nums[i]) == visited.end())
                {
                    tmp.clear();
                    tmp.push_back(nums[i]);
                    tmp.push_back(nums[j]);
                    ret.push_back(tmp);

                    /*加入已访问set*/
                    visited.insert(nums[i]);
                    visited.insert(nums[j]);

                    ++i;
                    --j;
                }//if
                else if (sum < target)
                    ++i;
                else
                    --j;
            }//while
        }//if
        else{
            for (int i = begPos; i < len; ++i)
            {
                if (visited.find(nums[i]) == visited.end())
                {
                    visited.insert(nums[i]);
                    /*得到k-1 sum的序列*/
                    vector<vector<int>> subRet = k_Sum(nums, i+1, count - 1, target-nums[i]);
                    if (!subRet.empty())
                    {
                        int sz = subRet.size();
                        for (int j = 0; j < sz; ++j)
                        {
                            subRet[j].insert(subRet[j].begin(), nums[i]);
                        }//for
                        ret.insert(ret.end(), subRet.begin(), subRet.end());
                    }//if
                }//if
            }//for
        }//else
        /*返回结果集*/
        return ret;
    }

    /*4-sum算法,方法二,2-sum的变形*/
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        if (nums.empty() || nums.size() < 4)
            return vector<vector<int>>();

        sort(nums.begin(), nums.end());
        int len = nums.size();
        set<vector<int>> tmpRet;
        vector<vector<int>> res;

        for (int i = 0; i < len; ++i)
        {
            for (int j = i + 1; j < len; ++j)
            {
                int beg = j + 1, end = len - 1;
                while (beg < end)
                {
                    int sum = nums[i] + nums[j] + nums[beg] + nums[end];
                    if (sum == target)
                    {
                        vector<int> tmp = { nums[i], nums[j], nums[beg], nums[end] };
                        tmpRet.insert(tmp);

                        ++beg;
                        --end;
                    }
                    else if (sum < target)
                    {
                        ++beg;
                    }
                    else
                        --end;
                }//while
            }//for
        }//for
        auto iter = tmpRet.begin();
        while (iter != tmpRet.end())
        {
            res.push_back(*iter);
            ++iter;
        }//while
        return res;
    }

};

int main()
{
    Solution s;
    vector<int> v = { 1, 0, -1, 0, -2, 2 };
    vector<vector<int>>ret = s.fourSum(v,0);

    system("pause");
    return
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页